SINTESIPICY

VALVOLE DI BILANCIAMENTO A SFERA PER IL CONTROLLO DELLA PORTATA INDIPENDENTE DALLA PRESSIONE

IMPIEGO

Le valvole motorizzate SINTESI PICV trovano impiego per la regolazione della portata indipendentemente dalla pressione per unità terminali a portata costante in impianti HVAC.

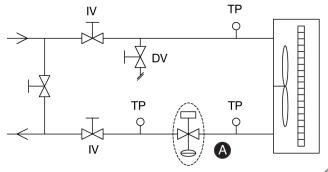
DESCRIZIONE

La valvola motorizzata di bilanciamento indipendente dalla pressione (PICV) combina le funzioni di un controllo differenziale della pressione, di una valvola di regolazione e di una valvola di controllo a due vie in un unico prodotto. La membrana al suo interno è in grado di mantenere costante la pressione differenziale attraverso l'orifizio della valvola di regolazione e fornire al terminale una portata costante. Gestendo la portata qualunque sia la pressione differenziale presente negli altri circuiti dell'impianto, non è necessaria nessun'altra valvola di bilanciamento. La portata fornita all'unità terminale resta costante qualsiasi siano le condizioni dell'impianto, rendendola ideale per sistemi che usano pompe di ultima generazione.

CARATTERISTICHE

La valvola motorizzata **SINTESI** PICV è caratterizzata dalle seguenti funzioni:

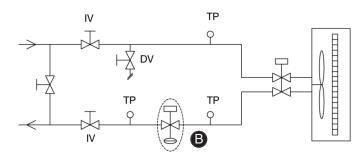
- Sfera equipercentuale ad alta precisione per garantire il massimo controllo della portata in ogni condizione.
- Completa tenuta in chiusura grazie alla valvola a sfera incorporata.

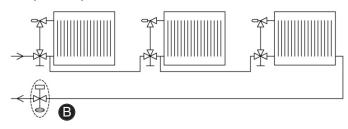

VANTAGGI

- Riduzione del costo di installazione in quanto consente d'installare un'unica valvola di bilanciamento direttamente a monte di ogni terminale dell'impianto.
- Selezione semplice della valvola in quanto la scelta è effettuata solo sulla base della portata e non deve essere calcolata alcuna autorità.
- Il commissioning è facile dato che non è richiesta alcuna costosa operazione di bilanciamento.
- Semplice controllo del sistema grazie alla caratteristica equipercentuale (sfera con foro a profilo speciale) e l'autorità pari a 1.

ESEMPI APPLICATIVI

1. SISTEMI A POTENZA TERMICA VARIABILE


Limitazione automatica della portata per fornitura stabile di energia, indipendentemente dalla pressione disponibile, e regolazione della valvola di controllo della portata per efficacie ed effettiva gestione della temperatura.


2. SISTEMI A POTENZA TERMICA FISSA

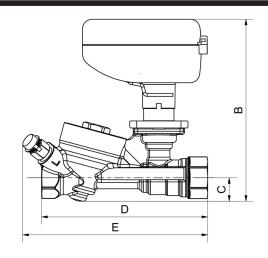
In caso di regolazione della portata di ventilconvettori, essa assicura la portata necessaria al terminale e favorisce il bilanciamento idraulico dell'impianto. Lo scambiatore di calore lavora perciò sempre nelle migliori condizioni possibili con qualsiasi pressione differenziale e l'impianto è diviso in aree separate idraulicamente.

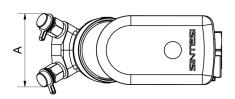
3. SISTEMI DI RISCALDAMENTO MONOTUBO

Riduzione di improvvisi cambiamenti dovuti a variazioni di pressione differenziale nel circuito, se posizionata sul ritorno del circuito, assicurando una portata stabile e costante sui rami principali a qualsiasi apertura delle valvole termostatiche.

- A La valvola SINTESI PICV è usata per limitare e regolare la portata.
- B La valvola SINTESI PICV è usata per limitare la portata.

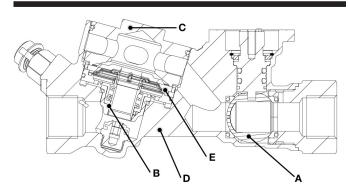
SINTESIPICY


VALVOLE DI BILANCIAMENTO A SFERA PER IL CONTROLLO DELLA PORTATA INDIPENDENTE DALLA PRESSIONE


CARATTERISTICHE IDRAULICHE

	DN15	DN15	DN15	DN20	DN20
Portata max.	360 l/h	700 l/h	1000 l/h	780 l/h	1150 l/h
	0,100 l/s	0,194 l/s	0,278 l/s	0,217 l/s	0,319 l/s
Start-up max.	20 kPa	20 kPa	20 kPa	25 kPa	25 kPa
	0,20 bar	0,20 bar	0,20 bar	0,25 bar	0,25 bar
Connessioni	Rp ½" F	Rp ½" F	Rp ½" F	Rp ¾" F	Rp ¾" F
	EN 10226-1				

ΔP max.	Temperatura	Pressione max di servizio	Corsa	Coefficiente intrinseco di regolazione	Grado di perdita	Accuratezza 0 ÷ 1 bar
600 kPa / 6 bar	-10 ÷ 120 °C	2500 kPa / 25 bar	90°	50÷100 IEC 60534-2-3	Classe IV IEC 60534-4	± 5%


DIMENSIONI

Valvola						
DN15	Portata [l/h]	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)
DN15	360	62	160	20	142	158
DN15	700	62	160	20	142	158
DN15	1000	62	160	20	142	158
DN20	780	62	160	20	142	158
DN20	1150	62	160	20	142	158

MATERIALI CORPO VALVOLA

	Materiali
Sfera (A)	Ottone CW617N
Molla cartuccia (B)	Polimero alta resistenza - EPDM Acciaio inossidabile AISI 303
Corpo cartuccia (C)	Ottone CW614N
Corpo (D)	Ottone DZR CW602N
Membrana (E)	EPDM

SINTESI PICV

VALVOLE DI BILANCIAMENTO A SFERA PER IL CONTROLLO DELLA PORTATA INDIPENDENTE DALLA PRESSIONE

SELEZIONE SERVOCOMANDO

A seconda dell'impiego a cui è destinata la valvola motorizzata SINTESI PICV, può essere motorizzata con servocomando ON/OFF, modulante, proporzionale e ModBus-RTU.

SERVOCOMANDO SINTESI · 2 PUNTI / 3 PUNTI

CARATTERISTICHE TECNICHE			
Comando elettrico	2 punti / 3 punti		
Connessione al corpo valvola	innesto rapido a pressione		
Rotazione	90°		
Tempo di manovra	15 / 35 / 120 s		
Indicatore di posizione	freccia rotante		
Alimentazione	230V 50/60 Hz - 24V 50/60 Hz		
Potenza assorbita	3,9 VA		
Microinterruttore supplementare	apertura		
Portata microinterruttore	1 A resistivo - 250 V		
Grado di protezione	IP54		
Lunghezza cavo	80 cm		

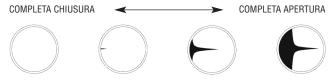
SERVOCOMANDO SINTESI SMART · PROPORZIONALE

CARATTERISTICHE TECNICHE				
Comando di posizionamento	0-10V / 2-10V / 0-20 mA / 4-20 mA			
Connessione al corpo valvola	innesto rapido a pressione			
Rotazione	90°			
Tempo di manovra	30 / 60 / 120 s			
Indicatore di posizione	freccia rotante			
Alimentazione	24V DC/AC 50/60 Hz - 230V 50/60 Hz			
Potenza assorbita	3,5 VA			
Feedback di posizionamento	2-10V DC			
Grado di protezione	IP54			
Lunghezza cavo	80 cm			

SERVOCOMANDO SINTESI SMART · MODBUS RTU

CARATTERISTICHE TECNICHE			
Connessione al corpo valvola	innesto rapido a pressione		
Rotazione	90°		
Tempo di manovra	selezionabile		
Indicatore di posizione	freccia rotante		
Alimentazione	24V DC/AC 50/60 Hz		
Potenza assorbita	3,5 VA		
Grado di protezione	IP54		
Lunghezza cavo	80 cm		

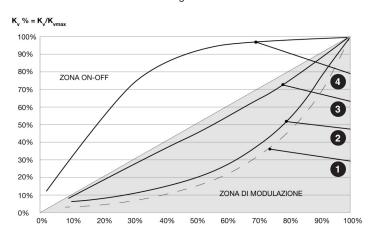
CARATTERISTICHE TECNICHE		
Comando elettrico	2 punti / 3 punti	
Connessione al corpo valvola	innesto rapido a pressione	
Rotazione	90°	
Tempo di manovra	30 / 60 / 120 s	
Indicatore di posizione	freccia rotante	
Alimentazione	12 V / 24 V DC	
Potenza assorbita	2 VA	
Feedback di posizionamento	fase a valvola aperta e valvola chiusa	
Grado di protezione	IP54	
Lunghezza cavo	80 cm	



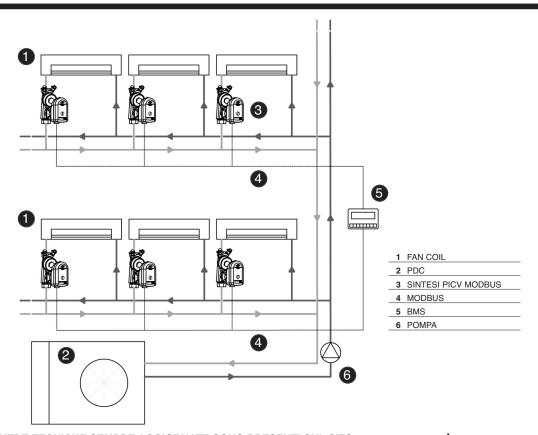
SINTESIPICY

VALVOLE DI BILANCIAMENTO A SFERA PER IL CONTROLLO DELLA PORTATA INDIPENDENTE DALLA PRESSIONE

LIMITAZIONE DELLA PORTATA E CONTROLLO DELLA TEMPERATURA


L'elemento di controllo della portata consiste in una sfera con profilo speciale; la pressione differenziale attraverso la valvola è mantenuta costante tramite un regolatore di pressione differenziale. La limitazione e la modulazione della portata sono entrambe effettuate attraverso la sfera caratterizzata. Dal momento che la pressione differenziale attraverso la sfera è tenuta costante dal regolatore di pressione, la portata è quindi solamente funzione dell'area della sezione di passaggio della sfera. Siccome la sfera è spinta contro la sede in PTFE, chiudendo una parte del foro profilato, è stato possibile progettare tale profilo in modo che la ratio di modifica della sezione di passaggio al chiudersi della sfera producesse una caratteristica di controllo equipercentuale.

Il massimo valore di portata viene impostato limitando la posizione di massima apertura che la sfera può raggiungere. Ciò può essere ottenuto limitando la corsa in apertura dell'attuatore montato sulla valvola. Il controllo della portata è realizzato posizionando la sfera tra la posizione di chiusura e la posizione in cui si raggiunge la portata di progetto, ovvero il punto di massima apertura.


CURVE DI CONTROLLO

Agendo sull'asta della valvola di controllo viene modificato il Kv della valvola e quindi la portata. La relazione tra la corsa dell'asta e il Kv della valvola è evidenziata dal diagramma in basso.

- 1 CURVA EQUIPERCENTUALE TEORICA
- 2 CURVA CARATTERISTICA ECCELLENTE
- 3 CURVA CARATTERISTICA BUONA
- 4 CURVA CARATTERISTICA MEDIOCRE

SCHEMA APPLICATIVO

LE SCHEDE TECNICHE SEMPRE AGGIORNATE SONO PRESENTI SUL SITO www.comparato.com

